monelcu爆炸復(fù)合棒的制備及復(fù)合過程數(shù)值模擬研究.doc
monelcu爆炸復(fù)合棒的制備及復(fù)合過程數(shù)值模擬研究,摘 要用于電子、通訊等軍工及民用設(shè)備的復(fù)合金屬材料要求具有高強(qiáng)度、高導(dǎo)熱、高密封等性能。為了獲得具有較高結(jié)合強(qiáng)度的蒙乃爾/銅復(fù)合棒,首次采用爆炸復(fù)合方法對其進(jìn)行了制備。本文主要從爆炸復(fù)合參數(shù)理論、實(shí)驗(yàn)分析和數(shù)值模擬三個方面對爆炸復(fù)合法制備蒙乃爾/銅復(fù)合棒進(jìn)行了研究。得出了如下結(jié)論:1、通過計(jì)算機(jī)輔助設(shè)計(jì)程序,對蒙乃爾/...
內(nèi)容介紹
此文檔由會員 czp2987 發(fā)布摘 要
用于電子、通訊等軍工及民用設(shè)備的復(fù)合金屬材料要求具有高強(qiáng)度、高導(dǎo)熱、高密封等性能。為了獲得具有較高結(jié)合強(qiáng)度的蒙乃爾/銅復(fù)合棒,首次采用爆炸復(fù)合方法對其進(jìn)行了制備。本文主要從爆炸復(fù)合參數(shù)理論、實(shí)驗(yàn)分析和數(shù)值模擬三個方面對爆炸復(fù)合法制備蒙乃爾/銅復(fù)合棒進(jìn)行了研究。得出了如下結(jié)論:
1、通過計(jì)算機(jī)輔助設(shè)計(jì)程序,對蒙乃爾/銅這種金屬組合的爆炸復(fù)合參數(shù)進(jìn)行計(jì)算,并得出了爆炸復(fù)合窗口,從中選擇合理的爆炸復(fù)合參數(shù)。
2、利用爆炸復(fù)合方法成功制備了蒙乃爾/銅雙金屬復(fù)合棒材。借助金相顯微鏡(OM)、掃描電子顯微鏡(SEM)、能譜分析(EDS)和壓剪分離測試,探討了不同工藝條件下蒙乃爾/銅爆炸復(fù)合界面的微觀組織和力學(xué)性能。結(jié)果表明:隨著爆炸比的增加,結(jié)合界面逐漸由平直狀過渡到波狀;在銅基體晶粒內(nèi)的形變孿晶數(shù)量隨爆炸比的增加而增加;界面局部存在少量熔區(qū),熔區(qū)內(nèi)存在細(xì)小的柱狀晶;復(fù)合界面中沒有發(fā)生擴(kuò)散,但經(jīng)過熱處理后其界面觀察到了擴(kuò)散。剪切斷裂發(fā)生在銅側(cè)而非界面處,表明界面結(jié)合強(qiáng)度高于銅基體。結(jié)合界面附近的硬度較兩側(cè)基體內(nèi)的硬度為高,并且隨著與界面距離的增加,兩側(cè)基體內(nèi)的硬度逐漸降低。
3、采用有限元軟件LS-DYNA對爆炸復(fù)合過程進(jìn)行了數(shù)值模擬。獲得了爆炸復(fù)合過程中復(fù)層速度、碰撞區(qū)域壓力和速度分布及其大小,并與理論計(jì)算結(jié)果和實(shí)驗(yàn)結(jié)果進(jìn)行了比較。結(jié)果表明,爆炸復(fù)合數(shù)值模擬結(jié)果與理論和實(shí)驗(yàn)結(jié)果符合良好,所建立的模擬準(zhǔn)確可靠,LS-DYNA可較好的模擬了爆炸復(fù)合過程,但尚不能對爆炸復(fù)合過程中的射流及波形特征進(jìn)行模擬。通過數(shù)值模擬可方便了解爆炸復(fù)合過程,為爆炸復(fù)合工藝參數(shù)的選擇提供了參考。
關(guān)鍵詞 蒙乃爾/銅,爆炸復(fù)合,界面,數(shù)值模擬
ABSTRACT
Composite metallic material, used in the field of electronical, communicational and other civil equipments, are required to have the properties of high strength, high thermal conductivity and high leak tightness. The high-bonding-strength Monel/Cu clad rod was prepared by means of explosive cladding technology for the first time. The explosive cladding parameters were optimized in light of the related theory and experimental analysis, and the cladding process was numerically simulated in the present work. The conclusions were as follows:
1、By means of computer-aid-design program, the explosive cladding parameters of Monel/Cu system were calculated and the explosive cladding window was obtained, then the optimal parameters were chosen.
2、The Monel/Cu bimetal clad rod was produced with the explosive cladding technique. The microstructure and mechanical properties of the bonding interface in some different processing were analyzed by means of optical microscope, scanning electron microscopy, energy spectrum analysis and shearing separate tests. The results showed that the smooth bonding interface was transformed to a wavy bonding interface as the explosive ratios increased. Deformation twins were observed in the grains of the copper matrix, whose amount increased with the increasing of the explosive ratio. There were a certain amount of molten zones in the interface and fine columnar grains existed in this molten zone. EDS analysis indicated that diffusion did not take place between bond interfaces, however, diffusion was observed after annealing. The shearing fracture took place in the copper matrix and not in the bond interface. The microhardness, in the vicinity of the interface, was higher than that of metal matrix, and gradually decreased away from the interface.
3、Explosive cladding process was numerically simulated through finite element software LS-DYNA. the velocity of clad tube、pressure distribution of collision zone were calculated during the cladding process. Compared with theoretically calculation and experimental results, the numerically simulated results showed that, the numerically simulated results were corresponded to theoretic results and experimental results, the mathematical model can simulate the process of explosive cladding correctly. However, the jet formation and the wavy interface can't be simulated during the explosive cladding process. The numerical simulation can be referred to explosive cladding technology.
KEY WORDS monel/copper, explosive cladding, interface, numerical simulation
目錄
摘 要 I
ABSTRACT II
第一章 文獻(xiàn)綜述 1
1.1 Monel/Cu復(fù)合棒材的研究背景 1
1.2雙金屬復(fù)合管/棒的制備方法 1
1.2.1離心技術(shù)法 1
1.2.2消失模真空吸鑄法 2
1.2.3中頻感應(yīng)加熱釬焊法 2
1.2.4拉拔成形法 2
1.2.5滾壓成形法 3
1.2.6電磁成形法 3
1.2.7熱膨脹法 4
1.2.8填芯連鑄復(fù)合法 4
1.3爆炸復(fù)合雙金屬復(fù)合管/棒 4
1.3.1爆炸復(fù)合的基本概念 5
1.3.2爆炸復(fù)合研究概況及其動態(tài) 5
1.3.3爆炸復(fù)合法制備雙金屬管/棒 6
1.3.4爆炸復(fù)合方法與其他方法制備雙金屬管/棒優(yōu)缺點(diǎn)比較 8
1.4爆炸復(fù)合成波機(jī)理的研究 9
1.5爆炸復(fù)合數(shù)值模擬研究進(jìn)展 11
1.6本文的主要工作和研究意義 12
第二章 實(shí)驗(yàn)材料與實(shí)驗(yàn)過程 13
2.1實(shí)驗(yàn)材料 13
2.2實(shí)驗(yàn)過程 13
2.2.1 Monel/Cu雙金屬復(fù)合棒的制備 13
2.2.2熱處理工藝 15
2.2.3界面力學(xué)性能測試 15
2.2.4界面微觀組織結(jié)構(gòu)和成分分析測試 16
第三章 爆炸復(fù)合參數(shù)理論及復(fù)合窗口的確定 17
3.1參數(shù)計(jì)算流程 17
3.2爆炸復(fù)合參數(shù)理論 18
3.2.1碰撞點(diǎn)移動速度Vcp的臨界條件 19
3.2.2碰撞點(diǎn)移動速度Vcp 20
3.2.3復(fù)層最小飛行速度Vpmin 21
3.2.4復(fù)層最大飛行速度Vpmax 21
3.2.5復(fù)層的飛行速度Vp 22
3.2.6碰撞角β 22
3.2.7外爆法的裝藥量與間距 22
3.3爆炸復(fù)合窗口的確定 24
3.4蒙乃爾/銅爆炸復(fù)合參數(shù) 26
3.5本章小結(jié) 26
第四章 實(shí)驗(yàn)結(jié)果及分析 27
4.1宏觀形貌 27
4.2金相觀察 27
4.3掃描電鏡觀察 31
4.4復(fù)合棒壓剪強(qiáng)度實(shí)驗(yàn)結(jié)果 35
4.5壓剪斷口形貌及成分分析結(jié)果 36
4.6顯微硬度測試 37
4.7本章小結(jié) 38
第五章 爆炸復(fù)合過程的數(shù)值模擬 39
5.1 ANSYS/LS-DYNA程序介紹 39
5.1.1概述 39
5.1.2 ANSYS/LS-DYNA程序算法 40
5.1.3沙漏控制和人工體積粘性 42
5.1.4顯式動力分析 42
5.2有限元模型的建立 43
5.3材料模型 44
5.4數(shù)值模擬結(jié)果與討論 46
5.4.1復(fù)層運(yùn)動速度 47
5.4.2碰撞點(diǎn)區(qū)域移動速度 48
5.4.3碰撞點(diǎn)區(qū)域的壓力場 49
5.4.4剪切應(yīng)力和等效塑性應(yīng)變分布 50
5.4.5碰撞點(diǎn)區(qū)域的溫度場 51
5.5 本章小結(jié) 51
第六章 結(jié)論與展望 53
6.1 主要結(jié)論 53
6.2 展望 53
參考文獻(xiàn) 55
致謝 60