太陽能輔助多功能熱泵.doc
約73頁DOC格式手機打開展開
太陽能輔助多功能熱泵,太陽能多功能熱泵實驗研究大摘要本文提出一種將家用熱泵熱水器和太陽能熱水器相結合,經改造后構成的可以實現(xiàn)多種功能的系統(tǒng),該系統(tǒng)在實現(xiàn)了夏季制冷、冬季空氣源熱泵制熱、全年熱泵制取熱水以及太陽能制取熱水四種功能的基礎上,增加了有兩級冷凝的夏季制冷兼制熱水和冬季太陽能熱水輔助水源熱泵制熱功能,實現(xiàn)了廢熱的回...
內容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
太陽能多功能熱泵實驗研究
大摘要
本文提出一種將家用熱泵熱水器和太陽能熱水器相結合,經改造后構成的可以實現(xiàn)多種功能的太陽能輔助多功能熱泵系統(tǒng),該系統(tǒng)在實現(xiàn)了夏季制冷、冬季空氣源熱泵制熱、全年熱泵制取熱水以及太陽能制取熱水四種功能的基礎上,增加了有兩級冷凝的夏季制冷兼制熱水和冬季太陽能熱水輔助水源熱泵制熱功能,實現(xiàn)了廢熱的回收利用,減少了室外熱污染,同時緩減了冬季空氣源熱泵制熱時室外機結霜的問題。
本文詳細介紹了所提出的系統(tǒng)運行原理以及各個功能模式的實現(xiàn),按照所設計原理圖的制冷劑循環(huán)管路,組裝了實驗樣機,對夏季制冷、制冷兼制熱水、冬季空氣源熱泵制熱、太陽能熱水輔助水源熱泵制熱以及全年熱泵制取熱水五種運行模式進行了實驗研究,并對系統(tǒng)的運行性能給予了詳細分析,結果表明,系統(tǒng)各模式在相應的實驗條件下均有較好的運行效果,所得主要結論如下:
1.夏季室內單制冷實驗過程中,系統(tǒng)的吸氣溫度維持在10.0℃,排氣溫度維持在79.0℃,實驗過程中,工作狀態(tài)平穩(wěn),平均制冷量為3803W,制冷平均COP值約為3.1;
2.對夏季制冷兼制熱水模式進行詳細的實驗研究,結果表明,在室外風機未開啟時,系統(tǒng)的制熱水速度較快,而制冷量平均值為2900W;在風機開啟以后,系統(tǒng)制冷量迅速提升,最大值達到3700W,平均值為3500W,制冷平均COP值為3.0,而蓄熱水箱內熱水溫升很緩慢,熱水從45℃加熱至55℃,用時280min。整個運行過程中,系統(tǒng)綜合COP值在室外風機未開啟時在5.0以上,風機開啟后仍高于3.0;
3.冬季空氣源熱泵制熱時,系統(tǒng)運行穩(wěn)定,較高的排氣溫度使得系統(tǒng)有更多的熱量可以釋放給室內,滿足室內熱負荷,其平均制熱量為3750W,實驗期間,系統(tǒng)的平均制熱COP值為3.4;
4.太陽能輔助水源熱泵供熱時,當水源溫度在30℃~40℃之間時,系統(tǒng)的制熱COP值大于4.0,高于空氣源熱泵制熱,隨著蓄熱水箱內熱水溫度的下降,系統(tǒng)的COP值雖然仍高于空氣源熱泵制熱,有一定優(yōu)勢,但是由于壓縮機排氣溫度的下降,導致系統(tǒng)制熱效果有所下降;
5.對太陽能輔助多功能熱泵制熱水性能分析表明:隨著環(huán)境溫度的升高,系統(tǒng)吸、排氣壓力均有所升高,在較高的環(huán)境溫度下,系統(tǒng)仍在安全范圍內工作;系統(tǒng)制熱水性能受環(huán)境溫度的變化影響較大,環(huán)境溫度為19.4℃時,制熱水時間明顯縮短,性能系數(shù)COP也有較大提高,制熱水時間比6.7℃時縮短了58min。
文章的最后針對實驗過程中出現(xiàn)的制冷劑不足和吸氣過熱度太大的現(xiàn)象,進行分析后,在原有的系統(tǒng)原理圖基礎上,提出了改進方案,增加了兩個電磁閥和一段毛細節(jié)流管,用來解決系統(tǒng)可腀@魷值納鮮魷窒?;并俄嵞季衷u浼嬤迫人投咎裟芨ㄖ缺彌迫攘街中略齬δ艿目刂品椒ń辛私檣堋�
關鍵詞 太陽能;多功能熱泵;兩級冷凝;性能系數(shù)
Abstract
In this paper, a solar assisted multi-functional heat pump is proposed based on a detailed solar heat pump survey, which has integrated household heat pump air conditioner with solar hot water heater. On the basic functions of retaining the original summer cooling, air source heat pump heating in winter, heat pump water heater throughout the year and solar hot water heating modes, it has added summer cooling integrated water heater and solar hot water auxiliary water source heat pump heating function in winter. The new functions has achieved recycling of waste heat, reduced thermal pollution, and mitigated the problem of outdoor coil frost in air source heat pump mode.
This paper describes the operating principle and the realization of each mode of the proposed system. The experimental prototype has been established in accordance with the schematic design of the refrigerant circulation. The paper studied five operation modes like summer cooling, cooling and water heating, air source heat pump system in winter, solar hot water assisted water source heat pump and heat pump water heater around the year. Furthermore, it has provided a detailed analysis of the operation performance. The results show that the system performs well under the corresponding experimental conditions. Here are the main conclusions obtained:
1. During the summer cooling experiment, when the compressor's suction temperature is 10.0℃ and exhaust temperature is 79.0℃, the system has a smooth working state with the average cooling capacity is 3803w and the average COP is 3.1;
2. A detailed summer cooling integrated water heating mode experimental study has been carried out. Its results show that when the outdoor fan is turned off, the water heating rate is faster and the average cooling capacity is 2900w; after the fan is turned on, the system cooling capacity increases rapidly to the maximum value 3700w, the average cooling capacity is 3500w, and the average cooling COP is 3.0, while the heat storage tank water temperature increases very slowly, the hot water temperature changes from 45℃ to 55℃ within 280 min. During the whole operation process, when the outdoor fan is turned off, the integrated system COP value is over 5.0; after the fan is turned on, the value is still higher than 3.0;
3. The system operates stably during the air source heat pump heating mode. With the high exhaust temperature, the system can release more heat to the room to meet the indoor heat load, whose the average heat capacity is 3750w, and during the experimental period, the system′s average heating COP value is 3.4;
4. The te..
大摘要
本文提出一種將家用熱泵熱水器和太陽能熱水器相結合,經改造后構成的可以實現(xiàn)多種功能的太陽能輔助多功能熱泵系統(tǒng),該系統(tǒng)在實現(xiàn)了夏季制冷、冬季空氣源熱泵制熱、全年熱泵制取熱水以及太陽能制取熱水四種功能的基礎上,增加了有兩級冷凝的夏季制冷兼制熱水和冬季太陽能熱水輔助水源熱泵制熱功能,實現(xiàn)了廢熱的回收利用,減少了室外熱污染,同時緩減了冬季空氣源熱泵制熱時室外機結霜的問題。
本文詳細介紹了所提出的系統(tǒng)運行原理以及各個功能模式的實現(xiàn),按照所設計原理圖的制冷劑循環(huán)管路,組裝了實驗樣機,對夏季制冷、制冷兼制熱水、冬季空氣源熱泵制熱、太陽能熱水輔助水源熱泵制熱以及全年熱泵制取熱水五種運行模式進行了實驗研究,并對系統(tǒng)的運行性能給予了詳細分析,結果表明,系統(tǒng)各模式在相應的實驗條件下均有較好的運行效果,所得主要結論如下:
1.夏季室內單制冷實驗過程中,系統(tǒng)的吸氣溫度維持在10.0℃,排氣溫度維持在79.0℃,實驗過程中,工作狀態(tài)平穩(wěn),平均制冷量為3803W,制冷平均COP值約為3.1;
2.對夏季制冷兼制熱水模式進行詳細的實驗研究,結果表明,在室外風機未開啟時,系統(tǒng)的制熱水速度較快,而制冷量平均值為2900W;在風機開啟以后,系統(tǒng)制冷量迅速提升,最大值達到3700W,平均值為3500W,制冷平均COP值為3.0,而蓄熱水箱內熱水溫升很緩慢,熱水從45℃加熱至55℃,用時280min。整個運行過程中,系統(tǒng)綜合COP值在室外風機未開啟時在5.0以上,風機開啟后仍高于3.0;
3.冬季空氣源熱泵制熱時,系統(tǒng)運行穩(wěn)定,較高的排氣溫度使得系統(tǒng)有更多的熱量可以釋放給室內,滿足室內熱負荷,其平均制熱量為3750W,實驗期間,系統(tǒng)的平均制熱COP值為3.4;
4.太陽能輔助水源熱泵供熱時,當水源溫度在30℃~40℃之間時,系統(tǒng)的制熱COP值大于4.0,高于空氣源熱泵制熱,隨著蓄熱水箱內熱水溫度的下降,系統(tǒng)的COP值雖然仍高于空氣源熱泵制熱,有一定優(yōu)勢,但是由于壓縮機排氣溫度的下降,導致系統(tǒng)制熱效果有所下降;
5.對太陽能輔助多功能熱泵制熱水性能分析表明:隨著環(huán)境溫度的升高,系統(tǒng)吸、排氣壓力均有所升高,在較高的環(huán)境溫度下,系統(tǒng)仍在安全范圍內工作;系統(tǒng)制熱水性能受環(huán)境溫度的變化影響較大,環(huán)境溫度為19.4℃時,制熱水時間明顯縮短,性能系數(shù)COP也有較大提高,制熱水時間比6.7℃時縮短了58min。
文章的最后針對實驗過程中出現(xiàn)的制冷劑不足和吸氣過熱度太大的現(xiàn)象,進行分析后,在原有的系統(tǒng)原理圖基礎上,提出了改進方案,增加了兩個電磁閥和一段毛細節(jié)流管,用來解決系統(tǒng)可腀@魷值納鮮魷窒?;并俄嵞季衷u浼嬤迫人投咎裟芨ㄖ缺彌迫攘街中略齬δ艿目刂品椒ń辛私檣堋�
關鍵詞 太陽能;多功能熱泵;兩級冷凝;性能系數(shù)
Abstract
In this paper, a solar assisted multi-functional heat pump is proposed based on a detailed solar heat pump survey, which has integrated household heat pump air conditioner with solar hot water heater. On the basic functions of retaining the original summer cooling, air source heat pump heating in winter, heat pump water heater throughout the year and solar hot water heating modes, it has added summer cooling integrated water heater and solar hot water auxiliary water source heat pump heating function in winter. The new functions has achieved recycling of waste heat, reduced thermal pollution, and mitigated the problem of outdoor coil frost in air source heat pump mode.
This paper describes the operating principle and the realization of each mode of the proposed system. The experimental prototype has been established in accordance with the schematic design of the refrigerant circulation. The paper studied five operation modes like summer cooling, cooling and water heating, air source heat pump system in winter, solar hot water assisted water source heat pump and heat pump water heater around the year. Furthermore, it has provided a detailed analysis of the operation performance. The results show that the system performs well under the corresponding experimental conditions. Here are the main conclusions obtained:
1. During the summer cooling experiment, when the compressor's suction temperature is 10.0℃ and exhaust temperature is 79.0℃, the system has a smooth working state with the average cooling capacity is 3803w and the average COP is 3.1;
2. A detailed summer cooling integrated water heating mode experimental study has been carried out. Its results show that when the outdoor fan is turned off, the water heating rate is faster and the average cooling capacity is 2900w; after the fan is turned on, the system cooling capacity increases rapidly to the maximum value 3700w, the average cooling capacity is 3500w, and the average cooling COP is 3.0, while the heat storage tank water temperature increases very slowly, the hot water temperature changes from 45℃ to 55℃ within 280 min. During the whole operation process, when the outdoor fan is turned off, the integrated system COP value is over 5.0; after the fan is turned on, the value is still higher than 3.0;
3. The system operates stably during the air source heat pump heating mode. With the high exhaust temperature, the system can release more heat to the room to meet the indoor heat load, whose the average heat capacity is 3750w, and during the experimental period, the system′s average heating COP value is 3.4;
4. The te..