applied and pure research institute.doc
約41頁DOC格式手機打開展開
applied and pure research institute,applied and pure research institute內(nèi)容豐富,建議下載閱覽。①頁數(shù) 41②字?jǐn)?shù) 10256③ 摘要 it is shown that the 1915 einstein equation is incompatible with the physical notion that a w...
內(nèi)容介紹
此文檔由會員 快樂浪子 發(fā)布
Applied and Pure Research Institute
內(nèi)容豐富,建議下載閱覽。
①頁數(shù) 41
②字?jǐn)?shù) 10256
③ 摘要
It is shown that the 1915 Einstein equation is incompatible with the physical notion that a wave carries away energy-momentum. This proof is compatible with that Maxwell-Newton Approximation (the linear field equation for weak gravity), and is supported by the binary pulsar experiments. For dynamic problems, the linear field equation is independent of, and furthermore incompatible with the Einstein equation. The linear equation, as a first-order approximation, requires the existence of the weak gravitational wave such that it must be bounded in amplitude and be related to the dynamics of the source of radiation. Due to neglecting these crucial physical associations, in addition to inadequate understanding of the equivalence principle, unphysical solutions were mistaken as gravitational waves. It is concluded theoretically that, as Einstein and Rosen suggested, a physical gravitational wave solution for the 1915 equation does not exist. This conclusion is given further supports by analyzing the issue of plane-waves versus exact "wave" solutions. Moreover, the approaches of Damour and Taylor for the radiation of binary pulsars would be valid only if they are as an approximation of the equation of 1995 update. In addition, the update equation shows that the singularity theorems prove only the breaking down of Wheeler-Hawking theories, but not general relativity. It is pointed out that some Lorentz manifolds are among those that actually disagree with known experimental facts.
④關(guān)鍵字 compatibility, dynamic solution
⑤參考文獻(xiàn)
1. H. A. Lorentz, Proc. K. Ak. Amsterdam 8, 603 (1900); J. A. Wheeler, A Journey into Gravity and Spacetime (Freeman, San Francisco, 1990), p. 186.
2. A. Einstein, The Meaning of Relativity (Princeton Univ. Press, 1954).
3. The Born-Einstein Letters, commentary by Max Born (Walker, New York, 1968), p. 125.
4. A. Einstein & N. Rosen, J. Franklin Inst. 223, 43 (1937).
5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).
6. S. W. Hawking and G. F. R. Ellis, The large Scale Structure of Space-Time (Cambridge Uni. Press, 1973).
7. D. Kramer, H. Stephani, E. Herlt, & M. MacCallum, Exact Solutions of Einstein's Field Equations, ed. E. Schmutzer (Cambridge Univ. Press, Cambridge, 1980).
8. S. Weinberg, Gravitation and Cosmology (John Wiley, New York, 1972), p. 273.
9. C. Y. Lo, Phys. Essays, 10 (3), 424-436 (September, 1997).
10. C. Y. Lo, Phys. Essays, 12 (2), 226-241 (June, 1999).
11. C. Y. Lo, Phys. Essays, 12 (3), 508-526 (September, 1999).
12. W. Pauli, Theory of Relativity (Pergamon Press, London, 1958).
13. C. Y. Lo, Astrophys. J. 455: 421-428 (Dec. 20, 1995).
14. V. A. Fock, Rev. Mod. Phys. 29, 325 (1957).
15. H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. R. Soc. London A 251, 519-533 (1959).
16. R. A. Hulse & J. H. Taylor, Astrophys. J. Lett. 65, L51 (1975).
17. R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).
18. C. Y. Lo, in Proc. Sixth Marcel Grossmann Meeting On General Relativity, 1991, ed. H. Sato & T. Nakamura, 1496 (World Sci., Singapore, 1992).
19. T. Damour, "The Problem of Motion in Newtonian and Einsteinian Gravity" in 300 Years of Gravitation edited by S. W. Hawking and W. Israel (Cambridge Univ. Press., Cambridge, 1987).
20. T. Damour & B. Schmidt, J. Math. Phys. 31 (10), 2441-2453 (October, 1990).
21. P. T. Chruscie, M. A. H. McCallum, & D. B. Singleton, Phil. R. Soc. Lond. A 350, 113 (1995).
22. A. Einstein, L. Infeld, and B. Hoffmann, Annals of Math. 39 (1), 65-100 (Jan. 1938).
23. R. P. Feynman, The Feynman Lectures on Gravitation (Addison-Wesley, New York, 1995).
24. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. R. Soc. Lond. A 269, 21 (1962).
25. T. Damour & J. H. Taylor, Astrophys. J. 366: 501-511 (1991).
26. T. Damour & J. H. Taylor, Phys. Rev. D, 45 (6), 1840-1868 (1992).
27. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton University Press, 1993).
28. C. Y. Lo, Phys. Essays, 13 (1), 109-120 (March, 2000).
29. N. Rosen, Phys. Z. Sowjet, 12, 366 (1937); Bull. Research Council Israel 3, 328 (1953).
30. A. E. Scheidigger, Revs. Modern Phys. 25, 451 (1953).
內(nèi)容豐富,建議下載閱覽。
①頁數(shù) 41
②字?jǐn)?shù) 10256
③ 摘要
It is shown that the 1915 Einstein equation is incompatible with the physical notion that a wave carries away energy-momentum. This proof is compatible with that Maxwell-Newton Approximation (the linear field equation for weak gravity), and is supported by the binary pulsar experiments. For dynamic problems, the linear field equation is independent of, and furthermore incompatible with the Einstein equation. The linear equation, as a first-order approximation, requires the existence of the weak gravitational wave such that it must be bounded in amplitude and be related to the dynamics of the source of radiation. Due to neglecting these crucial physical associations, in addition to inadequate understanding of the equivalence principle, unphysical solutions were mistaken as gravitational waves. It is concluded theoretically that, as Einstein and Rosen suggested, a physical gravitational wave solution for the 1915 equation does not exist. This conclusion is given further supports by analyzing the issue of plane-waves versus exact "wave" solutions. Moreover, the approaches of Damour and Taylor for the radiation of binary pulsars would be valid only if they are as an approximation of the equation of 1995 update. In addition, the update equation shows that the singularity theorems prove only the breaking down of Wheeler-Hawking theories, but not general relativity. It is pointed out that some Lorentz manifolds are among those that actually disagree with known experimental facts.
④關(guān)鍵字 compatibility, dynamic solution
⑤參考文獻(xiàn)
1. H. A. Lorentz, Proc. K. Ak. Amsterdam 8, 603 (1900); J. A. Wheeler, A Journey into Gravity and Spacetime (Freeman, San Francisco, 1990), p. 186.
2. A. Einstein, The Meaning of Relativity (Princeton Univ. Press, 1954).
3. The Born-Einstein Letters, commentary by Max Born (Walker, New York, 1968), p. 125.
4. A. Einstein & N. Rosen, J. Franklin Inst. 223, 43 (1937).
5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).
6. S. W. Hawking and G. F. R. Ellis, The large Scale Structure of Space-Time (Cambridge Uni. Press, 1973).
7. D. Kramer, H. Stephani, E. Herlt, & M. MacCallum, Exact Solutions of Einstein's Field Equations, ed. E. Schmutzer (Cambridge Univ. Press, Cambridge, 1980).
8. S. Weinberg, Gravitation and Cosmology (John Wiley, New York, 1972), p. 273.
9. C. Y. Lo, Phys. Essays, 10 (3), 424-436 (September, 1997).
10. C. Y. Lo, Phys. Essays, 12 (2), 226-241 (June, 1999).
11. C. Y. Lo, Phys. Essays, 12 (3), 508-526 (September, 1999).
12. W. Pauli, Theory of Relativity (Pergamon Press, London, 1958).
13. C. Y. Lo, Astrophys. J. 455: 421-428 (Dec. 20, 1995).
14. V. A. Fock, Rev. Mod. Phys. 29, 325 (1957).
15. H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. R. Soc. London A 251, 519-533 (1959).
16. R. A. Hulse & J. H. Taylor, Astrophys. J. Lett. 65, L51 (1975).
17. R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).
18. C. Y. Lo, in Proc. Sixth Marcel Grossmann Meeting On General Relativity, 1991, ed. H. Sato & T. Nakamura, 1496 (World Sci., Singapore, 1992).
19. T. Damour, "The Problem of Motion in Newtonian and Einsteinian Gravity" in 300 Years of Gravitation edited by S. W. Hawking and W. Israel (Cambridge Univ. Press., Cambridge, 1987).
20. T. Damour & B. Schmidt, J. Math. Phys. 31 (10), 2441-2453 (October, 1990).
21. P. T. Chruscie, M. A. H. McCallum, & D. B. Singleton, Phil. R. Soc. Lond. A 350, 113 (1995).
22. A. Einstein, L. Infeld, and B. Hoffmann, Annals of Math. 39 (1), 65-100 (Jan. 1938).
23. R. P. Feynman, The Feynman Lectures on Gravitation (Addison-Wesley, New York, 1995).
24. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. R. Soc. Lond. A 269, 21 (1962).
25. T. Damour & J. H. Taylor, Astrophys. J. 366: 501-511 (1991).
26. T. Damour & J. H. Taylor, Phys. Rev. D, 45 (6), 1840-1868 (1992).
27. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton University Press, 1993).
28. C. Y. Lo, Phys. Essays, 13 (1), 109-120 (March, 2000).
29. N. Rosen, Phys. Z. Sowjet, 12, 366 (1937); Bull. Research Council Israel 3, 328 (1953).
30. A. E. Scheidigger, Revs. Modern Phys. 25, 451 (1953).
TA們正在看...
- 商標(biāo)專利合同什么是專利文獻(xiàn)中的技術(shù)情報有什么作用.docx
- 商標(biāo)專利合同什么是專利文獻(xiàn)中的法律情報有什么作用.docx
- 商標(biāo)專利合同什么是專利文獻(xiàn)中的經(jīng)濟(jì)情報有什么作用.docx
- 商標(biāo)專利合同什么是專利文獻(xiàn)著錄項目及其代碼.docx
- 商標(biāo)專利合同什么是專利族同族專利和基本專利.docx
- 商標(biāo)專利合同使用專利文獻(xiàn)有什么好處.docx
- 商標(biāo)專利合同關(guān)于商標(biāo)侵權(quán)案件涉及異議爭議等程序...docx
- 商標(biāo)專利合同關(guān)于用于專利程序的微生物菌(毒)種...docx
- 商標(biāo)專利合同刪減商品服務(wù)項目申請書.docx
- 商標(biāo)專利合同變更商標(biāo)代理人申請書.docx