高速列車(chē)進(jìn)入隧道產(chǎn)生的微壓波及其控制研究.doc
約24頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)
高速列車(chē)進(jìn)入隧道產(chǎn)生的微壓波及其控制研究,24頁(yè)共計(jì)7582字摘要高速列車(chē)進(jìn)入隧道產(chǎn)生的壓縮波傳播到遂道出口時(shí),會(huì)向出口外輻射一低頻脈沖波,這種脈沖波產(chǎn)生的爆炸聲可達(dá)140~150db甚至更高的聲壓級(jí),對(duì)周邊環(huán)境造成嚴(yán)重危害,這種低頻脈沖波被稱(chēng)為“微氣壓波”。本文以聲波方程為基礎(chǔ),根據(jù)無(wú)擾動(dòng)邊界假設(shè),對(duì)高速列車(chē)在隧道內(nèi)產(chǎn)生的壓縮波進(jìn)行計(jì)算,根據(jù)理論結(jié)果作了數(shù)值...
內(nèi)容介紹
此文檔由會(huì)員 bfxqt 發(fā)布
24頁(yè)共計(jì)7582字
摘要
高速列車(chē)進(jìn)入隧道產(chǎn)生的壓縮波傳播到遂道出口時(shí),會(huì)向出口外輻射一低頻脈沖波,這種脈沖波產(chǎn)生的爆炸聲可達(dá)140~150dB甚至更高的聲壓級(jí),對(duì)周邊環(huán)境造成嚴(yán)重危害,這種低頻脈沖波被稱(chēng)為“微氣壓波”。本文以聲波方程為基礎(chǔ),根據(jù)無(wú)擾動(dòng)邊界假設(shè),對(duì)高速列車(chē)在隧道內(nèi)產(chǎn)生的壓縮波進(jìn)行計(jì)算,根據(jù)理論結(jié)果作了數(shù)值模擬,通過(guò)與文獻(xiàn)中理論和數(shù)值模擬結(jié)果的對(duì)比,顯示出了很好的一致性。在此基礎(chǔ)上,根據(jù)微氣壓波與壓縮波的梯度成正比的性質(zhì),提出兩種有源控制方法,并對(duì)間接控制方法作了理論分析和數(shù)值模擬,結(jié)果顯示了有源控制的可行性和高效性。對(duì)于直接控制方法,提出了控制要點(diǎn)和實(shí)現(xiàn)方法。最后設(shè)計(jì)了微壓波產(chǎn)生、觀測(cè)和有源控制實(shí)驗(yàn)。
目錄
摘要 i
Abstract ii
第一章 引言 1
1.1微壓波的產(chǎn)生 1
1.2現(xiàn)有理論和研究單位概述 1
1.3現(xiàn)有控制方法概述 3
1.4本文工作內(nèi)容 4
第二章 理論推導(dǎo)和數(shù)值模擬 6
2.1初級(jí)聲場(chǎng)的計(jì)算 6
2.2數(shù)值模擬 10
2.3討論 11
第三章 微壓波有源控制 12
3.1有源控制的引入 12
3.2數(shù)值模擬 13
3.3實(shí)驗(yàn)設(shè)計(jì) 14
第四章 結(jié)束語(yǔ) 17
參考文獻(xiàn) 18
致謝 20
關(guān)鍵字:高速列車(chē),微壓波
參考文獻(xiàn)
[1] C. Shin and W. Park, Numerical study of flow characteristics of the high speed train entering into a tunnel, Mechanics Research Communications 30(4) (2003) 287-296.
[2] 趙宇,高波,張兆杰,隧道壓力波的三維數(shù)值模擬,路基工程,133 (2007) 12-13。
[3] 李新霞,宋雷鳴,張新華,微氣壓波的產(chǎn)生機(jī)理與防治措施,噪聲與振動(dòng)控制,4 (2006) 70-72。
[4] A. Yamamoto, Pressure variations, aerodynamic drag of train, and natural ventilation in Shinkansen type tunnel, Quarterly Report of RTRI 15(4) (1974) 207–214.
[5] K. Matsuo, T. Aoki, S. Mashimo and E. Nakastu, Entry compression wave generated by a high-speed train entering a tunnel, Proceedings of the 9th Aerodynamics and Ventilation of Vehicle Tunnels. BHR Group Conference Series Publication 27 (1997) 925–934.
[6] W. Woods and C. Pope, Secondary aerodynamic effects in rail tunnels during vehicle entry, Proceedings of the Second International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge (1976) 71–86.
[7] M. Howe, Mach number dependence of the compression wave generated by a high-speed train entering a tunnel, Journal of Sound and Vibration 212(1) (1998) 23-26.
[8] M. Howe, The compression wave produced by a high-speed train entering a tunnel, Proceedings of the Royal Society 524 (1998a) 1523-1534.
[9] M. Howe, The compression wave generated by a high-speed train at a vented tunnel entrance, J. Acoust. Soc. Am. 104(3) (1998) 1158-1164.
[10] T. Yoon, S. Lee, J. Hwang and D. Lee, Prediction and validation on the sonic boom by a high-speed train entering a tunnel, Journal of Sound and Vibration 247(2) (2001) 195-211.
[11] S. Ozawa, T. Maeda, T. Matsumura, et al., Countermeasures to reduce micro-pressure waves radiating from exits of Shinkansen tunnels, 7th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels, Brighton, UK, 1991.
[12] M. Bellenoue, B. Auvity and T. Kageyama, Blind hood effects on the compression wave generated by a train entering a tunnel, Experimental Thermal and Fluid Science 25(6) (2001) 397-407.
[13] T. Aoki, A. Vardy and J. Brown, Passive alleviation of micro-pressure waves from tunnel portals, Journal of Sound and Vibration 220(5) (1999) 921-940.
[14] J. Lee and J. Kim, Approximate optimization of high-speed train nose shape for reducing micropressure wave, Struct Multidisc Optim 35 (2008) 79–87.
[15] M. Howe, Design of a tunnel-entrance hood with multiple windows and variable cross-section, Journal of Fluids and Structures 17(8) (2003) 1111-1121.
[16] A. Vardy and J. Brown, Influence of ballast on wave steepening in tunnels, Journal of Sound and Vibration 238 (2000) 595-615.
[17] M. Howe, Influence of train Mach number on the compression wave generated in a tunnel-entrance hood, Journal of Engineering Mathematics 46 (2003) 147–163.
[18] N. Sugimoto and T. Ogawa, Acoustic analysis of the pressure field in a tunnel, generated by entry of a train, Proceedings of the Royal Society of London A (1998) 454, 2083-2112.
[19] 杜功煥,朱哲民,龔秀芬,聲學(xué)基礎(chǔ)[M], (2001) 289-293。
[20] R. Raghunathan, H. Kim and T. Setoguchi, Aerodynamics of high-speed railway train, Progress in Aerospace Sciences 38 (2002) 469-514.
[21] P. Ricco, A. Baron and P. Molteni, Nature of pressure waves induced by a high-speed train traveling through a tunnel, Journal of Wind Engineering and Industrial Aerodynamics 95(8) (2007) 781-808.
摘要
高速列車(chē)進(jìn)入隧道產(chǎn)生的壓縮波傳播到遂道出口時(shí),會(huì)向出口外輻射一低頻脈沖波,這種脈沖波產(chǎn)生的爆炸聲可達(dá)140~150dB甚至更高的聲壓級(jí),對(duì)周邊環(huán)境造成嚴(yán)重危害,這種低頻脈沖波被稱(chēng)為“微氣壓波”。本文以聲波方程為基礎(chǔ),根據(jù)無(wú)擾動(dòng)邊界假設(shè),對(duì)高速列車(chē)在隧道內(nèi)產(chǎn)生的壓縮波進(jìn)行計(jì)算,根據(jù)理論結(jié)果作了數(shù)值模擬,通過(guò)與文獻(xiàn)中理論和數(shù)值模擬結(jié)果的對(duì)比,顯示出了很好的一致性。在此基礎(chǔ)上,根據(jù)微氣壓波與壓縮波的梯度成正比的性質(zhì),提出兩種有源控制方法,并對(duì)間接控制方法作了理論分析和數(shù)值模擬,結(jié)果顯示了有源控制的可行性和高效性。對(duì)于直接控制方法,提出了控制要點(diǎn)和實(shí)現(xiàn)方法。最后設(shè)計(jì)了微壓波產(chǎn)生、觀測(cè)和有源控制實(shí)驗(yàn)。
目錄
摘要 i
Abstract ii
第一章 引言 1
1.1微壓波的產(chǎn)生 1
1.2現(xiàn)有理論和研究單位概述 1
1.3現(xiàn)有控制方法概述 3
1.4本文工作內(nèi)容 4
第二章 理論推導(dǎo)和數(shù)值模擬 6
2.1初級(jí)聲場(chǎng)的計(jì)算 6
2.2數(shù)值模擬 10
2.3討論 11
第三章 微壓波有源控制 12
3.1有源控制的引入 12
3.2數(shù)值模擬 13
3.3實(shí)驗(yàn)設(shè)計(jì) 14
第四章 結(jié)束語(yǔ) 17
參考文獻(xiàn) 18
致謝 20
關(guān)鍵字:高速列車(chē),微壓波
參考文獻(xiàn)
[1] C. Shin and W. Park, Numerical study of flow characteristics of the high speed train entering into a tunnel, Mechanics Research Communications 30(4) (2003) 287-296.
[2] 趙宇,高波,張兆杰,隧道壓力波的三維數(shù)值模擬,路基工程,133 (2007) 12-13。
[3] 李新霞,宋雷鳴,張新華,微氣壓波的產(chǎn)生機(jī)理與防治措施,噪聲與振動(dòng)控制,4 (2006) 70-72。
[4] A. Yamamoto, Pressure variations, aerodynamic drag of train, and natural ventilation in Shinkansen type tunnel, Quarterly Report of RTRI 15(4) (1974) 207–214.
[5] K. Matsuo, T. Aoki, S. Mashimo and E. Nakastu, Entry compression wave generated by a high-speed train entering a tunnel, Proceedings of the 9th Aerodynamics and Ventilation of Vehicle Tunnels. BHR Group Conference Series Publication 27 (1997) 925–934.
[6] W. Woods and C. Pope, Secondary aerodynamic effects in rail tunnels during vehicle entry, Proceedings of the Second International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge (1976) 71–86.
[7] M. Howe, Mach number dependence of the compression wave generated by a high-speed train entering a tunnel, Journal of Sound and Vibration 212(1) (1998) 23-26.
[8] M. Howe, The compression wave produced by a high-speed train entering a tunnel, Proceedings of the Royal Society 524 (1998a) 1523-1534.
[9] M. Howe, The compression wave generated by a high-speed train at a vented tunnel entrance, J. Acoust. Soc. Am. 104(3) (1998) 1158-1164.
[10] T. Yoon, S. Lee, J. Hwang and D. Lee, Prediction and validation on the sonic boom by a high-speed train entering a tunnel, Journal of Sound and Vibration 247(2) (2001) 195-211.
[11] S. Ozawa, T. Maeda, T. Matsumura, et al., Countermeasures to reduce micro-pressure waves radiating from exits of Shinkansen tunnels, 7th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels, Brighton, UK, 1991.
[12] M. Bellenoue, B. Auvity and T. Kageyama, Blind hood effects on the compression wave generated by a train entering a tunnel, Experimental Thermal and Fluid Science 25(6) (2001) 397-407.
[13] T. Aoki, A. Vardy and J. Brown, Passive alleviation of micro-pressure waves from tunnel portals, Journal of Sound and Vibration 220(5) (1999) 921-940.
[14] J. Lee and J. Kim, Approximate optimization of high-speed train nose shape for reducing micropressure wave, Struct Multidisc Optim 35 (2008) 79–87.
[15] M. Howe, Design of a tunnel-entrance hood with multiple windows and variable cross-section, Journal of Fluids and Structures 17(8) (2003) 1111-1121.
[16] A. Vardy and J. Brown, Influence of ballast on wave steepening in tunnels, Journal of Sound and Vibration 238 (2000) 595-615.
[17] M. Howe, Influence of train Mach number on the compression wave generated in a tunnel-entrance hood, Journal of Engineering Mathematics 46 (2003) 147–163.
[18] N. Sugimoto and T. Ogawa, Acoustic analysis of the pressure field in a tunnel, generated by entry of a train, Proceedings of the Royal Society of London A (1998) 454, 2083-2112.
[19] 杜功煥,朱哲民,龔秀芬,聲學(xué)基礎(chǔ)[M], (2001) 289-293。
[20] R. Raghunathan, H. Kim and T. Setoguchi, Aerodynamics of high-speed railway train, Progress in Aerospace Sciences 38 (2002) 469-514.
[21] P. Ricco, A. Baron and P. Molteni, Nature of pressure waves induced by a high-speed train traveling through a tunnel, Journal of Wind Engineering and Industrial Aerodynamics 95(8) (2007) 781-808.
TA們正在看...
- jd020-簡(jiǎn)易數(shù)控銑齒機(jī)設(shè)計(jì).zip
- 機(jī)電一體化專(zhuān)業(yè)畢業(yè)論文:電氣控制與保護(hù).doc
- 如何做好建設(shè)項(xiàng)目工程造價(jià)控制.doc
- “工程造價(jià)管理”專(zhuān)業(yè)實(shí)習(xí)工作日志.doc
- 電大---工程造價(jià)畢業(yè)論文.doc
- 某市工業(yè)廠房土建施工投標(biāo)報(bào)價(jià).doc
- 局長(zhǎng)在全市體育工作會(huì)議上的講話(huà).doc
- 機(jī)關(guān)事務(wù)管理局工作要點(diǎn).doc
- 機(jī)關(guān)事務(wù)管理局精神文明建設(shè)工作計(jì)劃.doc
- 機(jī)關(guān)事務(wù)管理局中心組學(xué)習(xí)計(jì)劃.doc