數(shù)理邏輯在實際中的應(yīng)用.doc
約24頁DOC格式手機打開展開
數(shù)理邏輯在實際中的應(yīng)用,目錄第一章數(shù)理邏輯在問路問題中的應(yīng)用 11.1預(yù)備知識11.1.1問路問題11.1.2列表法11.2具體應(yīng)用1第二章數(shù)理邏輯在排隊論中的應(yīng)用 32.1預(yù)備知識32.1.1排隊論32.1.2范式32.2具體應(yīng)用3第三章數(shù)理邏輯在計算機科學中的應(yīng)用 53.1為計算機的可計算性研究提供依據(jù)53.2為計算...
內(nèi)容介紹
此文檔由會員 即刻啟程 發(fā)布
數(shù)理邏輯在實際中的應(yīng)用
目錄
第一章 數(shù)理邏輯在問路問題中的應(yīng)用 …………………………………………1
1.1 預(yù)備知識…………………………………………………………………………………1
1.1.1 問路問題………………………………………………………………………………1
1.1.2 列表法…………………………………………………………………………………1
1.2 具體應(yīng)用…………………………………………………………………………………1
第二章 數(shù)理邏輯在排隊論中的應(yīng)用 ……………………………………………3
2.1 預(yù)備知識…………………………………………………………………………………3
2.1.1 排隊論…………………………………………………………………………………3
2.1.2 范式……………………………………………………………………………………3
2.2 具體應(yīng)用…………………………………………………………………………………3
第三章 數(shù)理邏輯在計算機科學中的應(yīng)用 ………………………………………5
3.1 為計算機的可計算性研究提供依據(jù)……………………………………………………5
3.2 為計算機硬件系統(tǒng)的設(shè)計提供依據(jù)……………………………………………………5
3.3 為計算機程序設(shè)計語言提供主要思想…………………………………………………6
第四章 數(shù)理邏輯思想在英語語法教學中的應(yīng)用 ………………………………8
第五章 數(shù)理邏輯在數(shù)學證明中的應(yīng)用…………………………………………11
5.1 一些常用的證明方法、證明技巧 ……………………………………………………11
5.2 弄清邏輯命題之間的關(guān)系 ……………………………………………………………12
第六章 數(shù)理邏輯在案件審理推斷中的應(yīng)用……………………………………15
結(jié)論 …………………………………………………………………………………17
致謝 …………………………………………………………………………………18
參考文獻 ……………………………………………………………………………19
摘要 數(shù)理邏輯是研究推理的形式結(jié)構(gòu)和規(guī)律的數(shù)學分支,它是數(shù)學基礎(chǔ)重要的組成部分之一。數(shù)學在新的時代將會有很大的發(fā)展,而數(shù)理邏輯在其中將扮演著很關(guān)鍵的角色。數(shù)理邏輯并不僅僅局限于抽象的符號運算,它同樣可以幫助我們了解和解決很多現(xiàn)實問題。當今時代,數(shù)理邏輯在現(xiàn)實生活中應(yīng)用非常廣泛。本文主要介紹了數(shù)理邏輯在問路問題、排隊論、計算機科學、英語語法教學、數(shù)學證明及案件審理推斷中的應(yīng)用。近年來數(shù)理邏輯發(fā)展十分迅速,主要是由于其對于數(shù)學其它學科的發(fā)展有著深遠的影響,尤其促進了新近形成的計算機科學的發(fā)展,而其他學科的發(fā)展同樣也對數(shù)理邏輯的發(fā)展起了很大的推動作用。正因為數(shù)理邏輯這門學科是新近興起的且又發(fā)展迅速,因此它本身也存在著許多問題需要深入研究。
關(guān)鍵詞:數(shù)理邏輯 應(yīng)用 發(fā)展
Applications of mathematical logic in physically
Abstract Mathematical logic is a branch of mathematics which studies formal structure and regulation of inference. Mathematical logic is one of the important components of mathematical basis. The new era will be the era that great development will happen on mathematics and mathematical logic will play a critical role in it. Mathematical logic is not only confined to the abstract symbolic operation, it can also help us understand and solve a lot of realistic problems. Nowadays, mathematical logic has been widely used in the real life. This paper mainly introduces its applications in the problem of asking the way, queuing theory, computer science, English grammar teaching, mathematical proof and case inference. Mathematical logic develops rapidly in recent years. The main reason is that it has a profound impact on the development of other branches of mathematics. Especially it has promoted the development of the newly formed computer science. In turn,the development of other subjects has promoted the development of mathematical logic. Because it is a new rising and rapidly developing discipline, mathematical logic has many problems that have to be studied deeply.
Keywords mathematical logic application development
目錄
第一章 數(shù)理邏輯在問路問題中的應(yīng)用 …………………………………………1
1.1 預(yù)備知識…………………………………………………………………………………1
1.1.1 問路問題………………………………………………………………………………1
1.1.2 列表法…………………………………………………………………………………1
1.2 具體應(yīng)用…………………………………………………………………………………1
第二章 數(shù)理邏輯在排隊論中的應(yīng)用 ……………………………………………3
2.1 預(yù)備知識…………………………………………………………………………………3
2.1.1 排隊論…………………………………………………………………………………3
2.1.2 范式……………………………………………………………………………………3
2.2 具體應(yīng)用…………………………………………………………………………………3
第三章 數(shù)理邏輯在計算機科學中的應(yīng)用 ………………………………………5
3.1 為計算機的可計算性研究提供依據(jù)……………………………………………………5
3.2 為計算機硬件系統(tǒng)的設(shè)計提供依據(jù)……………………………………………………5
3.3 為計算機程序設(shè)計語言提供主要思想…………………………………………………6
第四章 數(shù)理邏輯思想在英語語法教學中的應(yīng)用 ………………………………8
第五章 數(shù)理邏輯在數(shù)學證明中的應(yīng)用…………………………………………11
5.1 一些常用的證明方法、證明技巧 ……………………………………………………11
5.2 弄清邏輯命題之間的關(guān)系 ……………………………………………………………12
第六章 數(shù)理邏輯在案件審理推斷中的應(yīng)用……………………………………15
結(jié)論 …………………………………………………………………………………17
致謝 …………………………………………………………………………………18
參考文獻 ……………………………………………………………………………19
摘要 數(shù)理邏輯是研究推理的形式結(jié)構(gòu)和規(guī)律的數(shù)學分支,它是數(shù)學基礎(chǔ)重要的組成部分之一。數(shù)學在新的時代將會有很大的發(fā)展,而數(shù)理邏輯在其中將扮演著很關(guān)鍵的角色。數(shù)理邏輯并不僅僅局限于抽象的符號運算,它同樣可以幫助我們了解和解決很多現(xiàn)實問題。當今時代,數(shù)理邏輯在現(xiàn)實生活中應(yīng)用非常廣泛。本文主要介紹了數(shù)理邏輯在問路問題、排隊論、計算機科學、英語語法教學、數(shù)學證明及案件審理推斷中的應(yīng)用。近年來數(shù)理邏輯發(fā)展十分迅速,主要是由于其對于數(shù)學其它學科的發(fā)展有著深遠的影響,尤其促進了新近形成的計算機科學的發(fā)展,而其他學科的發(fā)展同樣也對數(shù)理邏輯的發(fā)展起了很大的推動作用。正因為數(shù)理邏輯這門學科是新近興起的且又發(fā)展迅速,因此它本身也存在著許多問題需要深入研究。
關(guān)鍵詞:數(shù)理邏輯 應(yīng)用 發(fā)展
Applications of mathematical logic in physically
Abstract Mathematical logic is a branch of mathematics which studies formal structure and regulation of inference. Mathematical logic is one of the important components of mathematical basis. The new era will be the era that great development will happen on mathematics and mathematical logic will play a critical role in it. Mathematical logic is not only confined to the abstract symbolic operation, it can also help us understand and solve a lot of realistic problems. Nowadays, mathematical logic has been widely used in the real life. This paper mainly introduces its applications in the problem of asking the way, queuing theory, computer science, English grammar teaching, mathematical proof and case inference. Mathematical logic develops rapidly in recent years. The main reason is that it has a profound impact on the development of other branches of mathematics. Especially it has promoted the development of the newly formed computer science. In turn,the development of other subjects has promoted the development of mathematical logic. Because it is a new rising and rapidly developing discipline, mathematical logic has many problems that have to be studied deeply.
Keywords mathematical logic application development