金屬團簇的第一性原理計算.doc
約33頁DOC格式手機打開展開
金屬團簇的第一性原理計算,摘要:本文采用密度泛函理論方法中的雜化泛函b3lyp,以及結(jié)合贗勢基組lanl2dz對金屬團簇 、 、 (n=2-4)的所有可能結(jié)構(gòu)進行了研究,得到了這些結(jié)構(gòu)的平均鍵能,形成能,離解能以及l(fā)umo、homo。通過比較離解能的大小,得出這些團簇為 、 、 、 、 、 的最穩(wěn)定結(jié)構(gòu)。關鍵詞: 團簇;...
內(nèi)容介紹
此文檔由會員 movingwlkk 發(fā)布
金屬團簇的第一性原理計算
摘要:本文采用密度泛函理論方法中的雜化泛函B3LYP,以及結(jié)合贗勢基組LANL2DZ對金屬團簇 、 、 (n=2-4)的所有可能結(jié)構(gòu)進行了研究,得到了這些結(jié)構(gòu)的平均鍵能,形成能,離解能以及LUMO、HOMO。通過比較離解能的大小,得出這些團簇為 、 、 、 、 、 的最穩(wěn)定結(jié)構(gòu)。
關鍵詞: 團簇;W團簇; 團簇;密度泛函方法
First – Principles calculates of the metal clusters
Abstract: In this paper , We employ density functional theory in the hybrid functional B3LYP, with pseudopotential basis sets Lanl2DZ to study the metal clusters 、 、 (n=2-4)of all possible structure, get the average bond energy of those structures, formation energy, dissociation energy and the LUMO、HOMO. By comparing the size of dissociation energy. Come to these clusters as 、 、 、 、 、 the most stable structure.
Keyword: clusters;W clusters; clusters;Density function method (DFT)
目 錄
1引言...........................................................................................1
2計算理論和方法............................................................................2
2.1 理論.......................................................................................2
2.1.1 密度泛函理論........................................................................2
2.1.2 Hohenberg-Kohn 定理............................................................2
2.1.3 Kohn-Sham方程 ...................................................................3
2.2 密度泛函近似...........................................................................4
2.2.1 局域密度近似.........................................................................4
2.2.2 廣義梯度近似泛函....................................................................5
2.2.3 雜化密度泛函.........................................................................5
2.3 計算方法..................................................................................6
2.3.1 GAUSSIAN03.........................................................................6
2.3.2 GAUSSIAN形贗勢基組..............................................................6
2.4 LUMO和HOMO............................................................................6
3 (n=2-4)的計算................................................................................7
4 (n=2-4)的計算................................................................................10
5 (n=4)的計算.................................................................................13
6結(jié)論................................................................................................16
參考文獻............................................................................................18
謝辭....................................................................................................19
摘要:本文采用密度泛函理論方法中的雜化泛函B3LYP,以及結(jié)合贗勢基組LANL2DZ對金屬團簇 、 、 (n=2-4)的所有可能結(jié)構(gòu)進行了研究,得到了這些結(jié)構(gòu)的平均鍵能,形成能,離解能以及LUMO、HOMO。通過比較離解能的大小,得出這些團簇為 、 、 、 、 、 的最穩(wěn)定結(jié)構(gòu)。
關鍵詞: 團簇;W團簇; 團簇;密度泛函方法
First – Principles calculates of the metal clusters
Abstract: In this paper , We employ density functional theory in the hybrid functional B3LYP, with pseudopotential basis sets Lanl2DZ to study the metal clusters 、 、 (n=2-4)of all possible structure, get the average bond energy of those structures, formation energy, dissociation energy and the LUMO、HOMO. By comparing the size of dissociation energy. Come to these clusters as 、 、 、 、 、 the most stable structure.
Keyword: clusters;W clusters; clusters;Density function method (DFT)
目 錄
1引言...........................................................................................1
2計算理論和方法............................................................................2
2.1 理論.......................................................................................2
2.1.1 密度泛函理論........................................................................2
2.1.2 Hohenberg-Kohn 定理............................................................2
2.1.3 Kohn-Sham方程 ...................................................................3
2.2 密度泛函近似...........................................................................4
2.2.1 局域密度近似.........................................................................4
2.2.2 廣義梯度近似泛函....................................................................5
2.2.3 雜化密度泛函.........................................................................5
2.3 計算方法..................................................................................6
2.3.1 GAUSSIAN03.........................................................................6
2.3.2 GAUSSIAN形贗勢基組..............................................................6
2.4 LUMO和HOMO............................................................................6
3 (n=2-4)的計算................................................................................7
4 (n=2-4)的計算................................................................................10
5 (n=4)的計算.................................................................................13
6結(jié)論................................................................................................16
參考文獻............................................................................................18
謝辭....................................................................................................19