演化式類(lèi)神經(jīng)網(wǎng)絡(luò)評(píng)估信息評(píng)鑒系統(tǒng)對(duì)預(yù)測(cè)財(cái)務(wù)危機(jī)的影響.doc
約18頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)
演化式類(lèi)神經(jīng)網(wǎng)絡(luò)評(píng)估信息評(píng)鑒系統(tǒng)對(duì)預(yù)測(cè)財(cái)務(wù)危機(jī)的影響,摘 要本研究旨在以類(lèi)神經(jīng)網(wǎng)絡(luò)結(jié)合信息揭露評(píng)鑒系統(tǒng)對(duì)公司進(jìn)行財(cái)務(wù)危機(jī)預(yù)測(cè),探討政府推動(dòng)信息揭露評(píng)鑒系統(tǒng)是否真能提升公司信息透明度、健全公司治理制度以及增加公司財(cái)務(wù)危機(jī)預(yù)測(cè)的準(zhǔn)確性。以傳統(tǒng)羅吉斯回歸作為倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)(bpn)與演化式類(lèi)神經(jīng)網(wǎng)絡(luò)(enn)之財(cái)務(wù)危機(jī)預(yù)測(cè)模...
內(nèi)容介紹
此文檔由會(huì)員 bshhty 發(fā)布
演化式類(lèi)神經(jīng)網(wǎng)絡(luò)評(píng)估信息評(píng)鑒系統(tǒng)對(duì)預(yù)測(cè)財(cái)務(wù)危機(jī)的影響
摘 要
本研究旨在以類(lèi)神經(jīng)網(wǎng)絡(luò)結(jié)合信息揭露評(píng)鑒系統(tǒng)對(duì)公司進(jìn)行財(cái)務(wù)危機(jī)預(yù)測(cè),探討政府推動(dòng)信息揭露評(píng)鑒系統(tǒng)是否真能提升公司信息透明度、健全公司治理制度以及增加公司財(cái)務(wù)危機(jī)預(yù)測(cè)的準(zhǔn)確性。以傳統(tǒng)羅吉斯回歸作為倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)(BPN)與演化式類(lèi)神經(jīng)網(wǎng)絡(luò)(ENN)之財(cái)務(wù)危機(jī)預(yù)測(cè)模型預(yù)測(cè)能力的比較基準(zhǔn)。實(shí)證結(jié)果發(fā)現(xiàn)信息揭露程度可增加財(cái)務(wù)危機(jī)預(yù)測(cè)的準(zhǔn)確性,亦即信息揭露評(píng)鑒系統(tǒng)具備有用性;以預(yù)測(cè)準(zhǔn)確性而言,演化式類(lèi)神經(jīng)網(wǎng)絡(luò)模型優(yōu)于倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)模型優(yōu)于羅吉斯回歸模型,因此,應(yīng)優(yōu)先采用演化式類(lèi)神經(jīng)網(wǎng)絡(luò)來(lái)建構(gòu)財(cái)務(wù)危機(jī)預(yù)測(cè)模型。本研究結(jié)果希能有助于財(cái)務(wù)報(bào)表使用者進(jìn)行正確的投資決策,再者,供管制機(jī)關(guān)推動(dòng)公司治理制度,促使強(qiáng)化信息公開(kāi)機(jī)制之依據(jù)。
關(guān)鍵詞:信息揭露、公司治理、財(cái)務(wù)危機(jī)、倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)、遺傳算法
The Neural Network and Information Disclosure System to the Prediction of Financial Distress status
Abstract
The main purpose of this study is to construct back propagation neural network (BPN) and evolutionary neural network (ENN) based on information disclosure system. This paper investigates the usefulness of information disclosure system. It is find that Information disclosure system can not only increase information transparency but also improve preciseness of financial distress prediction. Compared with the traditional used logit model, it can discover that back propagation neural network and evolutionary neural network can provide more accurate prediction and information value. According preciseness of prediction, evolutionary neural network is better than back propagation neural network. Thus, adaptation genetic algorithms on neural network to construct financial distress prediction model is the best choice. Besides, this research’s result can not only provide users of financial statement to make good decision of investment but also help regulator practiced corporate governance mechanism and enhance information disclosure system.
Keywords: Information Disclosure, Corporate governance, Financial Distress, Back Propagation Neural network, Genetic Algorithms
參考文獻(xiàn)
李昭慧,2007,基因算法與決策樹(shù)于企業(yè)財(cái)務(wù)危機(jī)預(yù)警之研究,佛光大學(xué)信息學(xué)系研究所未出版碩士論文。
吳當(dāng)杰,2007,公司治理理論與實(shí)務(wù),第二版,財(cái)團(tuán)法人中華民國(guó)證券暨期貨市場(chǎng)發(fā)展基金會(huì)。
陳淑萍,2002,資料探勘應(yīng)用于財(cái)務(wù)危機(jī)預(yù)警模式之研究,銘傳大學(xué)信息管理研究所未出版碩士論文。
張斐章與張麗秋,2005,類(lèi)神經(jīng)網(wǎng)絡(luò),臺(tái)灣東華書(shū)局股份有限公司。
葉怡成,2006,Super PCNeuron 5.0 類(lèi)神經(jīng)網(wǎng)絡(luò)建構(gòu)軟件參考手冊(cè),中華大學(xué)信息管理學(xué)系 商業(yè)智慧研究室。
Altman, E. I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance. 23:589-609.
Beaver, W. H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research. 4:71-111.
Diamond, D. W. 1985. Optimal release of information by firms. Journal of Finance. 40:1071-1094.
Elliott, R. K. and P. D. Jacobson. 1994. Cost and benefits of business information disclosure. Accounting Horizons. 8:80-96.
Fernandez, E. and I. Olmeda. 1995. Bankruptcy prediction with artificial neural networks. Lect. Notes Comput. Sc. 1142-1146.
Holland, J. H. 1975. Adaptation in natural and artificial systems. University of Michigan, Cambridge, MIT Press, MA.
Jensen, M. C., and W. H. Meckling. 1976. Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Econmics. 13:305-360.
Koh, H. C., and S. S. Tan. 1999. A neural network approach to the prediction of going concern status. Accounting and Business Research. 29:211-216.
Lori, Holder-Webb. 2003. Strategic use of disclosure policy in distressed firms. Woring paper. University of Wisconsin-Madison.
McCulloch W. S. and W. Pitts. 1943. A logical Calculus of the Ideas Immanent in Nervous Activity. Bullentin of Mathematical Biophysics. 5:115-133.
Miller, G. S. 2002. Earnings performance and discretionary disclosure. Journal of Accounting Research. 40:173-204.
Odom, M. D. and R. Sharda. 1990. A neural network model for bankruptcy prediction. Proceedings of the IEEE International Conference on Neural Network. 2:163-168.
Ohlson, J. A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research. 18:109-131.
Smith, R. F. and A. H. Winakor. 1935. Changes in financial structure of unsuccessful industrial companies. Bureau of Business Research. University of Illinois.
Sung, T. K., N. Chang and G. Lee. 1999. Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems. 16:63-85.
Tam, K. Y. and M. Y. Kiang. 1992. Managerial applications of neural networks: The case of bank failure predictions. Management Science. 38:926-947.
Zurada, J. M. 1992. Introduction to Artificial Neural Systems. St. Paul, MN: West Publishing.
Zwijewski, M. E. 1984. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research. 22:59-82.
摘 要
本研究旨在以類(lèi)神經(jīng)網(wǎng)絡(luò)結(jié)合信息揭露評(píng)鑒系統(tǒng)對(duì)公司進(jìn)行財(cái)務(wù)危機(jī)預(yù)測(cè),探討政府推動(dòng)信息揭露評(píng)鑒系統(tǒng)是否真能提升公司信息透明度、健全公司治理制度以及增加公司財(cái)務(wù)危機(jī)預(yù)測(cè)的準(zhǔn)確性。以傳統(tǒng)羅吉斯回歸作為倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)(BPN)與演化式類(lèi)神經(jīng)網(wǎng)絡(luò)(ENN)之財(cái)務(wù)危機(jī)預(yù)測(cè)模型預(yù)測(cè)能力的比較基準(zhǔn)。實(shí)證結(jié)果發(fā)現(xiàn)信息揭露程度可增加財(cái)務(wù)危機(jī)預(yù)測(cè)的準(zhǔn)確性,亦即信息揭露評(píng)鑒系統(tǒng)具備有用性;以預(yù)測(cè)準(zhǔn)確性而言,演化式類(lèi)神經(jīng)網(wǎng)絡(luò)模型優(yōu)于倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)模型優(yōu)于羅吉斯回歸模型,因此,應(yīng)優(yōu)先采用演化式類(lèi)神經(jīng)網(wǎng)絡(luò)來(lái)建構(gòu)財(cái)務(wù)危機(jī)預(yù)測(cè)模型。本研究結(jié)果希能有助于財(cái)務(wù)報(bào)表使用者進(jìn)行正確的投資決策,再者,供管制機(jī)關(guān)推動(dòng)公司治理制度,促使強(qiáng)化信息公開(kāi)機(jī)制之依據(jù)。
關(guān)鍵詞:信息揭露、公司治理、財(cái)務(wù)危機(jī)、倒傳遞類(lèi)神經(jīng)網(wǎng)絡(luò)、遺傳算法
The Neural Network and Information Disclosure System to the Prediction of Financial Distress status
Abstract
The main purpose of this study is to construct back propagation neural network (BPN) and evolutionary neural network (ENN) based on information disclosure system. This paper investigates the usefulness of information disclosure system. It is find that Information disclosure system can not only increase information transparency but also improve preciseness of financial distress prediction. Compared with the traditional used logit model, it can discover that back propagation neural network and evolutionary neural network can provide more accurate prediction and information value. According preciseness of prediction, evolutionary neural network is better than back propagation neural network. Thus, adaptation genetic algorithms on neural network to construct financial distress prediction model is the best choice. Besides, this research’s result can not only provide users of financial statement to make good decision of investment but also help regulator practiced corporate governance mechanism and enhance information disclosure system.
Keywords: Information Disclosure, Corporate governance, Financial Distress, Back Propagation Neural network, Genetic Algorithms
參考文獻(xiàn)
李昭慧,2007,基因算法與決策樹(shù)于企業(yè)財(cái)務(wù)危機(jī)預(yù)警之研究,佛光大學(xué)信息學(xué)系研究所未出版碩士論文。
吳當(dāng)杰,2007,公司治理理論與實(shí)務(wù),第二版,財(cái)團(tuán)法人中華民國(guó)證券暨期貨市場(chǎng)發(fā)展基金會(huì)。
陳淑萍,2002,資料探勘應(yīng)用于財(cái)務(wù)危機(jī)預(yù)警模式之研究,銘傳大學(xué)信息管理研究所未出版碩士論文。
張斐章與張麗秋,2005,類(lèi)神經(jīng)網(wǎng)絡(luò),臺(tái)灣東華書(shū)局股份有限公司。
葉怡成,2006,Super PCNeuron 5.0 類(lèi)神經(jīng)網(wǎng)絡(luò)建構(gòu)軟件參考手冊(cè),中華大學(xué)信息管理學(xué)系 商業(yè)智慧研究室。
Altman, E. I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance. 23:589-609.
Beaver, W. H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research. 4:71-111.
Diamond, D. W. 1985. Optimal release of information by firms. Journal of Finance. 40:1071-1094.
Elliott, R. K. and P. D. Jacobson. 1994. Cost and benefits of business information disclosure. Accounting Horizons. 8:80-96.
Fernandez, E. and I. Olmeda. 1995. Bankruptcy prediction with artificial neural networks. Lect. Notes Comput. Sc. 1142-1146.
Holland, J. H. 1975. Adaptation in natural and artificial systems. University of Michigan, Cambridge, MIT Press, MA.
Jensen, M. C., and W. H. Meckling. 1976. Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Econmics. 13:305-360.
Koh, H. C., and S. S. Tan. 1999. A neural network approach to the prediction of going concern status. Accounting and Business Research. 29:211-216.
Lori, Holder-Webb. 2003. Strategic use of disclosure policy in distressed firms. Woring paper. University of Wisconsin-Madison.
McCulloch W. S. and W. Pitts. 1943. A logical Calculus of the Ideas Immanent in Nervous Activity. Bullentin of Mathematical Biophysics. 5:115-133.
Miller, G. S. 2002. Earnings performance and discretionary disclosure. Journal of Accounting Research. 40:173-204.
Odom, M. D. and R. Sharda. 1990. A neural network model for bankruptcy prediction. Proceedings of the IEEE International Conference on Neural Network. 2:163-168.
Ohlson, J. A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research. 18:109-131.
Smith, R. F. and A. H. Winakor. 1935. Changes in financial structure of unsuccessful industrial companies. Bureau of Business Research. University of Illinois.
Sung, T. K., N. Chang and G. Lee. 1999. Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems. 16:63-85.
Tam, K. Y. and M. Y. Kiang. 1992. Managerial applications of neural networks: The case of bank failure predictions. Management Science. 38:926-947.
Zurada, J. M. 1992. Introduction to Artificial Neural Systems. St. Paul, MN: West Publishing.
Zwijewski, M. E. 1984. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research. 22:59-82.
TA們正在看...
- 危急值報(bào)告及處理流程.doc
- 危急值報(bào)告質(zhì)量持續(xù)改進(jìn).doc
- 危急值報(bào)告項(xiàng)目及范圍.doc
- 即墨市馬山地質(zhì)公園工程地質(zhì)實(shí)習(xí)報(bào)告.doc
- 廳機(jī)關(guān)工會(huì)換屆會(huì)議工作報(bào)告.doc
- 歷史專(zhuān)業(yè)教育調(diào)查報(bào)告l.doc
- 壓縮空氣系統(tǒng)風(fēng)險(xiǎn)評(píng)估報(bào)告.doc
- 原創(chuàng)8086微機(jī)原理實(shí)驗(yàn)報(bào)告.doc
- 原創(chuàng)持續(xù)工藝確認(rèn)報(bào)告.doc
- 原料藥研發(fā)小試總結(jié)報(bào)告_mel.doc