船用柴油機缸套水冷.doc
約57頁DOC格式手機打開展開
船用柴油機缸套水冷,摘 要冷卻水的流動與傳熱直接影響到柴油機的冷卻效率、高溫零件的熱負荷、整機的熱量分配和能量利用。雖然從能量觀點來看,柴油機的冷卻是一種能量損失,但只有使柴油機受熱零部件得到適度的冷卻,使其溫度維持在允許的范圍內(nèi),才能保證其有效而可靠的工作。所以,對柴油機缸套冷卻性能的研究對改善柴油機冷卻效率和提高氣缸缸套可靠性有重要的...
內(nèi)容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
冷卻水的流動與傳熱直接影響到柴油機的冷卻效率、高溫零件的熱負荷、整機的熱量分配和能量利用。雖然從能量觀點來看,柴油機的冷卻是一種能量損失,但只有使柴油機受熱零部件得到適度的冷卻,使其溫度維持在允許的范圍內(nèi),才能保證其有效而可靠的工作。所以,對柴油機缸套冷卻性能的研究對改善柴油機冷卻效率和提高氣缸缸套可靠性有重要的意義。
在柴油機冷卻問題的各種研究方法中,計算流體力學(xué)已經(jīng)成為一個重要的手段。在冷卻系統(tǒng)數(shù)值模擬過程中,由于傳熱邊界條件難以確定,多數(shù)研究者僅僅考慮了冷卻水的流動問題,在計算傳熱問題時,將冷卻液的流動作為人為的邊界條件進行處理。本文采用流固耦合的方法,建立冷卻水腔與缸套之間三維耦合的模型,將冷卻水流場與缸套溫度場進行整體耦合,從而避免了對冷卻水側(cè)施加固定壁溫及冷卻液流動的邊界條件。利用FLUENT軟件自帶的UDF功能對燃氣側(cè)換熱系數(shù)及溫度進行編程,從而實現(xiàn)了對燃氣側(cè)施加第三類邊界條件,通過固體與流體之間的耦合,可以使施加的邊界條件更為準確。
用耦合的方法計算分析了某船用柴油機內(nèi)冷卻水的流動、溫度分布、壓力分布以及缸套溫度場的分布情況,并將計算結(jié)果與傳統(tǒng)的固定邊界條件結(jié)果進行對比分析。分析結(jié)果表明,通過流場與溫度場的耦合計算,能夠得到更加準確的冷卻水流動情況、壓力分布以及冷卻水出口溫度,同時還能得出缸套溫度場的分布情況,說明固體與流動之間耦合的數(shù)值模擬能夠更客觀的反映柴油機冷卻系統(tǒng)的流動與傳熱問題,并且能為冷卻系統(tǒng)的優(yōu)化設(shè)計提供重要的參考依據(jù)。
關(guān)鍵詞 柴油機;冷卻系統(tǒng);流動與傳熱;數(shù)值模擬;耦合計算
Abstract
The flow and heat transfer of cooling water has directly effect on the cooling efficiency of diesel engine, the heat load of high temperature parts and the heat distribution and energy use of whole diesel engine. Although, at the view of energy, the engine cooling is an energy loss process, it is the necessary process during the work of diesel engine. Because it is necessary to keep the temperature of the high temperature parts within the permissible range, in order to ensure the effective and reliable work of the diesel engine. Generally speaking, the research on cooling performance of diesel engine cylinder has great significance on improving the diesel engine’s cooling efficiency and the reliability of cylinder liner.
The computational fluid dynamics is one of the most important research methods in the research on diesel engine cooling problems. During the numerical simulation process of cooling system, because of the boundary conditions of heat transfer is difficult to determine, most researchers only considered the problem of cooling water flow. In addition, when calculated the heat transfer, they treated the coolant flow as artificial boundary condition. In this paper, the fluid-structure coupling method was used; the three-dimensional coupling model of cooling water chamber and cylinder was established. In the model, the cooling water flow field and cylinder temperature field was coupled, in which way the set of fixed wall temperature and coolant flow boundary condition were avoided. Using the UDF module of FLUENT to program the transfer coefficient and temperature at the gas side, and then the third type boundary condition exerted on the gas side was realized. It made the exertion of the boundary conditions more accurate, by coupling between fluids and solid.
The coupling method was used to analyze the cooling water flow field, temperature distribution, pressure distribution and the cylinder liner temperature distribution, and compare the calculation results and the traditional fixed boundary condition calculation results. The more accurate flow condition of cooling water, pressure distribution, the cooling water temperature at outlet, and the cylinder liner temperature distribution were obtained, through calculating of flow field and temperature field. The calculation results show that the coupling numerical simulation method could describe the flow and heat transfer problem of diesel engine more objectively. And the calculation results could provide important reference for the optimized design of cooling system.
Keywords Cooling system; Flow and transfer; Numerical simulation; Coupling calculation
目 錄
摘 要 I
Abstract III
第1章 緒 論 1
1.1 課題來源及研究意義 1
1.2 柴油機熱負荷研究現(xiàn)狀 1
1.2.1 實驗測量 1
1.2.2 數(shù)值仿真計算 2
1.2.2.1缸套傳熱微分方程及邊界條件計算發(fā)展現(xiàn)狀 2
1.2.2.2數(shù)值計算方法發(fā)展現(xiàn)狀 4
1.3 有限體積法在發(fā)動機設(shè)計中的應(yīng)用 6
1.4 有限體積法在發(fā)動機設(shè)計中的缺陷 6
1.5本研究的主要內(nèi)容及意義 7
第2章 流固耦合 9
2.1 流固耦合理論 9
2.2 用戶自定義函數(shù)(UDF) 10
2.3本章小結(jié) 11
第3章 數(shù)值模擬計算模型及邊界條件 12
3.1 柴油機參數(shù)介紹 13
3.2 冷卻水流動控制方程及其求解條件 13
3.2.1 冷卻水流動控制方程 13
3.2.2 湍流模型 14
3.2.3 流動邊界條件 15
3.3 導(dǎo)熱微分方程及其求解條件 16
3.3.1 導(dǎo)熱微分方程 16
3.3.2 方程的求解條件 18
3.3.3 傳熱邊界條件 18
3.4 缸套溫度場計算 19
3.4.1 缸套溫度場計算的換熱微分方程 19
3.4.2 燃氣側(cè)邊界條件及UDF的應(yīng)用 19
3.4.3 缸套與機體和缸蓋接觸面之間的換熱系數(shù) 24
3.4.4 缸套外側(cè)冷卻水換熱系數(shù)的分布 24
3.5 本章小結(jié) 25
第4章 模擬計算與分..
冷卻水的流動與傳熱直接影響到柴油機的冷卻效率、高溫零件的熱負荷、整機的熱量分配和能量利用。雖然從能量觀點來看,柴油機的冷卻是一種能量損失,但只有使柴油機受熱零部件得到適度的冷卻,使其溫度維持在允許的范圍內(nèi),才能保證其有效而可靠的工作。所以,對柴油機缸套冷卻性能的研究對改善柴油機冷卻效率和提高氣缸缸套可靠性有重要的意義。
在柴油機冷卻問題的各種研究方法中,計算流體力學(xué)已經(jīng)成為一個重要的手段。在冷卻系統(tǒng)數(shù)值模擬過程中,由于傳熱邊界條件難以確定,多數(shù)研究者僅僅考慮了冷卻水的流動問題,在計算傳熱問題時,將冷卻液的流動作為人為的邊界條件進行處理。本文采用流固耦合的方法,建立冷卻水腔與缸套之間三維耦合的模型,將冷卻水流場與缸套溫度場進行整體耦合,從而避免了對冷卻水側(cè)施加固定壁溫及冷卻液流動的邊界條件。利用FLUENT軟件自帶的UDF功能對燃氣側(cè)換熱系數(shù)及溫度進行編程,從而實現(xiàn)了對燃氣側(cè)施加第三類邊界條件,通過固體與流體之間的耦合,可以使施加的邊界條件更為準確。
用耦合的方法計算分析了某船用柴油機內(nèi)冷卻水的流動、溫度分布、壓力分布以及缸套溫度場的分布情況,并將計算結(jié)果與傳統(tǒng)的固定邊界條件結(jié)果進行對比分析。分析結(jié)果表明,通過流場與溫度場的耦合計算,能夠得到更加準確的冷卻水流動情況、壓力分布以及冷卻水出口溫度,同時還能得出缸套溫度場的分布情況,說明固體與流動之間耦合的數(shù)值模擬能夠更客觀的反映柴油機冷卻系統(tǒng)的流動與傳熱問題,并且能為冷卻系統(tǒng)的優(yōu)化設(shè)計提供重要的參考依據(jù)。
關(guān)鍵詞 柴油機;冷卻系統(tǒng);流動與傳熱;數(shù)值模擬;耦合計算
Abstract
The flow and heat transfer of cooling water has directly effect on the cooling efficiency of diesel engine, the heat load of high temperature parts and the heat distribution and energy use of whole diesel engine. Although, at the view of energy, the engine cooling is an energy loss process, it is the necessary process during the work of diesel engine. Because it is necessary to keep the temperature of the high temperature parts within the permissible range, in order to ensure the effective and reliable work of the diesel engine. Generally speaking, the research on cooling performance of diesel engine cylinder has great significance on improving the diesel engine’s cooling efficiency and the reliability of cylinder liner.
The computational fluid dynamics is one of the most important research methods in the research on diesel engine cooling problems. During the numerical simulation process of cooling system, because of the boundary conditions of heat transfer is difficult to determine, most researchers only considered the problem of cooling water flow. In addition, when calculated the heat transfer, they treated the coolant flow as artificial boundary condition. In this paper, the fluid-structure coupling method was used; the three-dimensional coupling model of cooling water chamber and cylinder was established. In the model, the cooling water flow field and cylinder temperature field was coupled, in which way the set of fixed wall temperature and coolant flow boundary condition were avoided. Using the UDF module of FLUENT to program the transfer coefficient and temperature at the gas side, and then the third type boundary condition exerted on the gas side was realized. It made the exertion of the boundary conditions more accurate, by coupling between fluids and solid.
The coupling method was used to analyze the cooling water flow field, temperature distribution, pressure distribution and the cylinder liner temperature distribution, and compare the calculation results and the traditional fixed boundary condition calculation results. The more accurate flow condition of cooling water, pressure distribution, the cooling water temperature at outlet, and the cylinder liner temperature distribution were obtained, through calculating of flow field and temperature field. The calculation results show that the coupling numerical simulation method could describe the flow and heat transfer problem of diesel engine more objectively. And the calculation results could provide important reference for the optimized design of cooling system.
Keywords Cooling system; Flow and transfer; Numerical simulation; Coupling calculation
目 錄
摘 要 I
Abstract III
第1章 緒 論 1
1.1 課題來源及研究意義 1
1.2 柴油機熱負荷研究現(xiàn)狀 1
1.2.1 實驗測量 1
1.2.2 數(shù)值仿真計算 2
1.2.2.1缸套傳熱微分方程及邊界條件計算發(fā)展現(xiàn)狀 2
1.2.2.2數(shù)值計算方法發(fā)展現(xiàn)狀 4
1.3 有限體積法在發(fā)動機設(shè)計中的應(yīng)用 6
1.4 有限體積法在發(fā)動機設(shè)計中的缺陷 6
1.5本研究的主要內(nèi)容及意義 7
第2章 流固耦合 9
2.1 流固耦合理論 9
2.2 用戶自定義函數(shù)(UDF) 10
2.3本章小結(jié) 11
第3章 數(shù)值模擬計算模型及邊界條件 12
3.1 柴油機參數(shù)介紹 13
3.2 冷卻水流動控制方程及其求解條件 13
3.2.1 冷卻水流動控制方程 13
3.2.2 湍流模型 14
3.2.3 流動邊界條件 15
3.3 導(dǎo)熱微分方程及其求解條件 16
3.3.1 導(dǎo)熱微分方程 16
3.3.2 方程的求解條件 18
3.3.3 傳熱邊界條件 18
3.4 缸套溫度場計算 19
3.4.1 缸套溫度場計算的換熱微分方程 19
3.4.2 燃氣側(cè)邊界條件及UDF的應(yīng)用 19
3.4.3 缸套與機體和缸蓋接觸面之間的換熱系數(shù) 24
3.4.4 缸套外側(cè)冷卻水換熱系數(shù)的分布 24
3.5 本章小結(jié) 25
第4章 模擬計算與分..