最小二乘曲線擬合及matlab實(shí)現(xiàn).doc
約64頁DOC格式手機(jī)打開展開
最小二乘曲線擬合及matlab實(shí)現(xiàn),最小二乘曲線擬合及matlab實(shí)現(xiàn)摘 要介紹曲線擬合的基本理論,對最小二乘原理進(jìn)行了全方位的理論闡述,同時(shí)也闡述了曲線擬合的基本原理及多項(xiàng)式曲線擬合模型的建立。詳細(xì)的解答了曲線擬合中的最小二乘法,并介紹了部分的正交最小二乘法理論。重點(diǎn)講解多項(xiàng)式擬合的具體步驟,同時(shí)也介紹了非線性方程的最小二乘擬合,在建立理論的基礎(chǔ)上對最...
內(nèi)容介紹
此文檔由會員 道客巴巴 發(fā)布最小二乘曲線擬合及MATLAB實(shí)現(xiàn)
摘 要
介紹曲線擬合的基本理論,對最小二乘原理進(jìn)行了全方位的理論闡述,同時(shí)也闡述了曲線擬合的基本原理及多項(xiàng)式曲線擬合模型的建立。詳細(xì)的解答了曲線擬合中的最小二乘法,并介紹了部分的正交最小二乘法理論。重點(diǎn)講解多項(xiàng)式擬合的具體步驟,同時(shí)也介紹了非線性方程的最小二乘擬合,在建立理論的基礎(chǔ)上對最小二乘曲線擬合法的MATLAB實(shí)現(xiàn)方法進(jìn)行研究,利用MATLAB2012b的平臺對測量數(shù)據(jù)進(jìn)行最小二乘曲線擬合,介紹MATLAB的具體構(gòu)造和曲線擬合工具。利用MATLAB中的ployfit函數(shù)對實(shí)測數(shù)據(jù)進(jìn)行多項(xiàng)式曲線擬合,并給出曲線擬合MATLAB實(shí)現(xiàn)的源程序,給出擬合曲線,并評定擬合的精度證明該方法是行之有效的。
關(guān)鍵詞:最小二乘法,曲線擬合,MATLAB,測量數(shù)據(jù)
Curve Fitting in Least-Square Method
and Its Realization with Matlab
Abstract
To introduce the basic theory of curve fitting and discuss the least squares principle in this paper, what’s more, we also discuss the basic principle of curve fitting and the establishment of polynomial curve fitting model. Meanwhile, we also introduce the least-square method of curve fitting in detail and part of the theory of orthogonal least square method. We mainly discuss the specific steps of polynomial fitting, and also introduces the nonlinear equation of the least squares fitting at the same time, which established on the theory of least squares curve fitting in MATLAB in order to realize the method to do research. Using MATLAB2012b platform to achieve the goal of measuring data and introducing the special structure of MATLAB and curve fitting tool. We can use ployfit function in MATLAB to polynomial curve fitting of experimental data, and get the MATLAB source program about curve fitting and the fitting curve. Finally, we need to prove the method of assessing the precision of the fitting is effective.
Key words: least square method; curve fitting; MATLAB, metrical data
最小二乘曲線擬合及MATLAB實(shí)現(xiàn) I
摘 要 I
CURVE FITTING IN LEAST-SQUARE METHOD AND ITS REALIZATION WITH MATLAB II
ABSTRACT II
第一章 引 言 1
1.1研究背景 1
1.1.1 歷史理論原理 1
1.1.2 現(xiàn)代研究 1
1.2 問題定義 2
1.2.1 曲線擬合的思想 2
1.2.2 多項(xiàng)式擬合 3
1.2.3 利用Matlab的polyfit函數(shù)進(jìn)行多項(xiàng)式擬合 3
1.3 論文結(jié)構(gòu) 3
第二章 數(shù)據(jù)曲線擬合 4
2.1測量數(shù)據(jù) 4
2.2擬合模型 4
2.3最小二乘原理 5
2.3.1最小二乘法 5
2.3.2最小二乘估計(jì)與極大似然估計(jì) 7
2.4數(shù)據(jù)擬合 9
2.4.1曲線擬合理論 9
2.4.2最小二乘法線性擬合原理 10
2.4.3最小二乘非線性擬合 12
2.4.4正交多項(xiàng)式 13
2.4.5正交最小二乘曲線擬合 15
2.5曲線擬合精度評定 17
第三章MATLAB 19
3.1MATLAB概述 19
3.1.1MATLAB簡介 19
3.1.2MATLAB的主要組成部分 21
3.2MATLAB2012B的運(yùn)行簡介 23
3.2.1啟動和退出MATLAB2012b 23
3.2.2MATLAB2012b桌面系統(tǒng) 24
3.2.3MATLAB函數(shù)調(diào)用系統(tǒng) 26
3.2.4MATLAB2012b的幫助系統(tǒng) 27
3.2.5附件管理系統(tǒng) 28
3.2.6數(shù)據(jù)交換系統(tǒng) 28
3.2.7MATLAB 中的其他系統(tǒng) 29
3.3最小二乘曲線擬合法的MATLAB實(shí)現(xiàn) 30
第四章 最小二乘法曲線擬合的MATLAB實(shí)現(xiàn) 32
4.1 使用POLYFIT函數(shù)實(shí)現(xiàn)多項(xiàng)式擬合 32
4.2 二次多項(xiàng)式的曲線擬合 33
4.3三次多項(xiàng)式的曲線擬合 34
4.4 四次多項(xiàng)式曲線擬合 35
4.5數(shù)據(jù)處理和精度評定 36
第五章 總結(jié) 40
參考文獻(xiàn) 41
附錄1: 43
MATLAB語言編程源代碼 43
附錄2: 45
各次擬合的擬合曲線方程 45
致謝 46
外文翻譯 47
外文部分 47
翻譯部分 54