等離激元太陽能電池陷光結構模型的解析理論研究.doc
約47頁DOC格式手機打開展開
等離激元太陽能電池陷光結構模型的解析理論研究,19000字 46頁目錄第一章 陷光結構及原理...........................................................................11.1陷光.....................................
內(nèi)容介紹
此文檔由會員 sbsiji00 發(fā)布
等離激元太陽能電池陷光結構模型的解析理論研究
19000字 46頁
目錄
第一章 陷光結構及原理...........................................................................1
1.1陷光................................................................................................................1
1.1.1陷光概述.....................................................................................................1
1.1.2陷光技術.....................................................................................................1
1.2 常見陷光結構..............................................................................................3
1.2.1微納陷光光柵結構....................................................................................3
1.2.2薄膜硅太陽能電池的陷光結構................................................................6
1.2.3微晶硅太陽能電池的陷光結構................................................................8
第二章 陷光模型....................................................................................10
2.1常見陷光模型...............................................................................................10
2.1.1周期為波長量級的陷光結構模型............................................................10
2.1.2周期光柵陷光結構模型............................................................................11
2.1.3大結構中的陷光結構模型........................................................................17
2.1.4極小內(nèi)嵌物的陷光結構模型....................................................................18
2.1.5薄膜中的陷光結構模型............................................................................20
2.2常見等離激元太陽能電池陷光模型...........................................................22
2.2.1硅-金屬界面表面等離激元(SPP)的陷光結構模型............................22
2.2.2 局部表面等離激元共振(LSPR)的金屬球陷光結構模型.................24
第三章 等離激元太陽能電池陷光模型研究..............................................26
3.1硅層厚度對吸收增強的影響......................................................................26
3.2粒子高度對吸收增強的影響......................................................................27
3.3粒子半徑對吸收增強的影響......................................................................28
3.4陣列周期對吸收增強的影響......................................................................29
3.5研究結論......................................................................................................32
總結.............................................................................................................34
致謝................................................................................................................36
參考文獻........................................................................................................37
摘要 本論文對等離激元太陽能電池的陷光結構模型進行了解析理論研究。本文先通過求解麥克斯韋方程組和相應的邊界條件得到了陷光結構模型的理論解析式,接著利用解析結果計算得到了特定陷光結構太陽能電池的吸收增強,最后利用計算得到的結果作圖。由研究結果可知,陷光結構參數(shù)襯底厚度、粒子高度、粒子半徑和陣列周期均會影響吸收增強。為了得到較高的吸收增強,襯底厚度需在2000 nm范圍內(nèi)取值;粒子高度和粒子半徑分別在峰值75 nm和140 nm附近取值較理想,偏離峰值吸收增強均降低;對每個特定的半徑,吸收增強隨著周期增大而急劇增加,陣列周期在峰值附近取值可以獲得較高的吸收增強,到達峰值后吸收增強一直趨向于1。隨著半徑的增加,峰值發(fā)生了紅移。
關鍵詞: 等離激元太陽能電池 陷光結構 吸收增強
Analytic theory of light trapping structural models at plasmonic solar cells
Abstract The key contribution of this thesis is an analytical theoretically investigation of light trapping structural models in plasmonic solar cells. In this work, we firstly obtained the analytical theoretically results of light trapping structural models by solving Maxwell’s equations with the corresponding boundary conditions. Then, we calculated the absorption enhancement of solar cells. Finally, using the obtained results, we plot pictures to quantitatively investigate the optical absorption enhancement effect. From final results, we find that the parameters of light trapping structure, that is, thickness of substrates, height and radius of particles, and array periods, have an obvious effect on absorption enhancement. In order to get a higher absorption enhancement, the value required for substrates thickness should be within the range of 2000 nm. The perfect values of particle height and radius are around the peak points with 75 nm and 140 nm respectively, and absorption enhancement decreased if values deviate from the peak points. For the array period structure, it will obtain a higher absorption enhancement when the period is in the vicinity of peak value for each specific radius. And absorption enhancement shows a sharp increase with the growing of per..
19000字 46頁
目錄
第一章 陷光結構及原理...........................................................................1
1.1陷光................................................................................................................1
1.1.1陷光概述.....................................................................................................1
1.1.2陷光技術.....................................................................................................1
1.2 常見陷光結構..............................................................................................3
1.2.1微納陷光光柵結構....................................................................................3
1.2.2薄膜硅太陽能電池的陷光結構................................................................6
1.2.3微晶硅太陽能電池的陷光結構................................................................8
第二章 陷光模型....................................................................................10
2.1常見陷光模型...............................................................................................10
2.1.1周期為波長量級的陷光結構模型............................................................10
2.1.2周期光柵陷光結構模型............................................................................11
2.1.3大結構中的陷光結構模型........................................................................17
2.1.4極小內(nèi)嵌物的陷光結構模型....................................................................18
2.1.5薄膜中的陷光結構模型............................................................................20
2.2常見等離激元太陽能電池陷光模型...........................................................22
2.2.1硅-金屬界面表面等離激元(SPP)的陷光結構模型............................22
2.2.2 局部表面等離激元共振(LSPR)的金屬球陷光結構模型.................24
第三章 等離激元太陽能電池陷光模型研究..............................................26
3.1硅層厚度對吸收增強的影響......................................................................26
3.2粒子高度對吸收增強的影響......................................................................27
3.3粒子半徑對吸收增強的影響......................................................................28
3.4陣列周期對吸收增強的影響......................................................................29
3.5研究結論......................................................................................................32
總結.............................................................................................................34
致謝................................................................................................................36
參考文獻........................................................................................................37
摘要 本論文對等離激元太陽能電池的陷光結構模型進行了解析理論研究。本文先通過求解麥克斯韋方程組和相應的邊界條件得到了陷光結構模型的理論解析式,接著利用解析結果計算得到了特定陷光結構太陽能電池的吸收增強,最后利用計算得到的結果作圖。由研究結果可知,陷光結構參數(shù)襯底厚度、粒子高度、粒子半徑和陣列周期均會影響吸收增強。為了得到較高的吸收增強,襯底厚度需在2000 nm范圍內(nèi)取值;粒子高度和粒子半徑分別在峰值75 nm和140 nm附近取值較理想,偏離峰值吸收增強均降低;對每個特定的半徑,吸收增強隨著周期增大而急劇增加,陣列周期在峰值附近取值可以獲得較高的吸收增強,到達峰值后吸收增強一直趨向于1。隨著半徑的增加,峰值發(fā)生了紅移。
關鍵詞: 等離激元太陽能電池 陷光結構 吸收增強
Analytic theory of light trapping structural models at plasmonic solar cells
Abstract The key contribution of this thesis is an analytical theoretically investigation of light trapping structural models in plasmonic solar cells. In this work, we firstly obtained the analytical theoretically results of light trapping structural models by solving Maxwell’s equations with the corresponding boundary conditions. Then, we calculated the absorption enhancement of solar cells. Finally, using the obtained results, we plot pictures to quantitatively investigate the optical absorption enhancement effect. From final results, we find that the parameters of light trapping structure, that is, thickness of substrates, height and radius of particles, and array periods, have an obvious effect on absorption enhancement. In order to get a higher absorption enhancement, the value required for substrates thickness should be within the range of 2000 nm. The perfect values of particle height and radius are around the peak points with 75 nm and 140 nm respectively, and absorption enhancement decreased if values deviate from the peak points. For the array period structure, it will obtain a higher absorption enhancement when the period is in the vicinity of peak value for each specific radius. And absorption enhancement shows a sharp increase with the growing of per..
TA們正在看...
- 01.1四時田園雜興課堂教學教案教學設計(部編版).doc
- 01.2稚子弄冰課堂教學教案教學設計(部編版).doc
- 01.3村晚課堂教學教案教學設計(部編版).doc
- 02冬陽·童年·駱駝隊公開課優(yōu)秀教案教學設計(五年...doc
- 02冬陽·童年·駱駝隊最新教研教案教學設計(部編版...doc
- 02冬陽·童年·駱駝隊課堂教學教案教學設計(部編版).doc
- 03祖父的園子公開課優(yōu)秀教案教學設計(五年級下冊).doc
- 03祖父的園子最新教研教案教學設計(部編版五年級下...doc
- 03祖父的園子課堂教學教案教學設計(部編版).doc
- 04草船借箭公開課優(yōu)秀教案教學設計(五年級下冊).doc